
 Robustness of
AI-generated text

detectors

Osama Ahmed, Austin Phillips, and
Ryan DeVries

Siamese Calibrated
Reconstruction Network

(SCRN)

Paper 1

Background

● LLMs have increasingly been used to mimic humans
○ ChatGPT, Deepseek, Cursor AI

● Concerns about misuse of AIGT
○ Bias, fake news, academic dishonesty, etc..

● AIGT have been developed in order to combat misuse

Metric-based vs Model-based

● Two categories of AIGT detection methods
● Metric-Based

○ Use LLM to generate scores (probability, rank, and entropy scores)
● Model-Based

○ Train detectors using supervised learning to classify text using labeled data

Problem with these approaches

● Both types are susceptible to adversarial perturbations
○ Perturbations are word substitutions or character swapping

● Depends on token level features
● AIGT detection should be based on high level features

Model Architecture

● 3 components to model
● Encoder

○ Pretrained RoBERTa model
● Reconstruction Network
● Classification Head

○ MaxPooling layer to extract features
○ MLP classifier
○ Classifcation loss was cross entropy

Reconstruction Network

● Representation received from RoBERTa encoder
● Representation mapped to a lower-dimensional space by a ReEncoder

○ Splits token representation into semantic and purburation terms
● Representation is reconstructed by the Re-Decoder

●

Reconstruction Network

● Latent regularization:
○

● Reconstruction Loss
○

● Still not enough to be robust against adversarial attack

Siamese Calibration

● Aim to minimize the symmetric KL divergence of two interference branches
○ Same input subject to independent random noise

● Average of and
● Total loss during training:
● During interference, only a single branch is taken

Experimental Setup - Datasets

● Human ChatGPT Comparison Corpus (HC3)
○ Human vs chatGPT responses

● TruthfulQA
○ Testing truthfulness on misconceptions

● Ghostbuster
● SeqXGPT-Bench

Experimental Setup - Training

● Trained on 8 x 32GB NVIDIA V100 GPUs
● Used base versions of pre-trained Bert, RoBERTa, and DeBERT

Experimental Setup - Testing

● In-domain Robustness
○ Testing: HC3, Training: HC3

● Cross-domain Robustness
○ Testing: TruthfulQA, Training: HC3

● Cross-genre Robustness
○ Testing: Ghostbuster, Training: HC3

● Mixed-source Robustness
○ SeqXGPT-Bench

Experimental Setup - Testing Metrics

● OA - Original Accuracy
● AUA - Accuracy under attack
● ASR - Accuracy success rate
● ANQ - Average number of queries

○ higher = more robust
● Precision, Recall, F1

○ When no attack is done

Cross-domain AIGT detection under PWWS attack

Cross-genre AIGT detection under PWWS attack

Mixed-source AIGT detection under PWWS attack

Summary of Results

● Human -> AI attacks are harder than AI -> Human attacks
● SCRN is able to improve robustness against perturbations in at least 4

different real world settings
○ Drop Off in accuracy with non-perturbed data (OA)

Limitations

● All experiments done in english, did not explore multilingual corpora
● The paraphrasing attack was not considered as text perturbations and was

not tested in the experiments

Paper 2: DIPPER

Introduction

● Robustness of detection algorithms for paraphrased AI-generated text is

unclear

● Using DIPPER, can improve detection techniques for paraphrased text

● Paraphrasers must be external (if used by the base LLM, still susceptible to

watermarking)

● Discourse Paraphraser (DIPPER) utilizes two techniques to evade detection

● Feature 1: Paraphrasing text in context
○ Paraphrases paragraph-length text (not sentence-length as many LLM’s do)

○ Reorders content

○ Can use the user prompt

● Feature 2: Controlling Output Diversity
○ Existing paraphrasers lack output diversity

○ Provides control over lexical diversity and content reordering for the output

What Does Dipper Do?

DIPPER (Visual Explanation)

● DIPPER (11B model) paraphrases AI-generated text by replacing

watermarked tokens with semantically-equivalent benign tokens,

undetectable by conventional watermark detectors

● Highlight the existing vulnerability of AI-content detectors to paraphrasing

● Prevent plagiarism

● Open-Source Contribution to the Research Community
○ The authors published all their code and work

○ They hope others will build off of their work and make more robust models

Why Does this Matter?

● LLM API’s save every output generated in a database

● When candidate text is given, it will compare the semantic representation to the

output stored in the database

● Information Retrieval (IR) evaluates based on keyword matching and frequency

● Detection results
○ 97.3% of PG19 paraphrases

○ 80.4% of Wikipedia paraphrases

● Important to note: it is NOT comparing exact words and watermarking, just the

meaning of the sentences and words themselves

Retrieval Methods

● Watermarking
○ Can be detected post-hoc

○ Imperceptible to human readers, has little effect on text quality, and hard to remove

● Statistical Outlier
○ Early methods: detect irregularities in entropy and perplexity

○ ChatGPT release inspired creation of closed-source GPTZero and DetectGPT (DetectGPT acknowledges AI

text has higher LLM likelihood than meaningful perturbations)

● Classifier
○ Distinguishes human-written text and AI-generated text

○ OpenAI created a GPT model as a web interface

● Paraphrasing bypasses all of these techniques through altering statistical properties

Background on AI Methods

● Because traditional statistical properties will not bypass detection, context

will be used for the attack

● Controllable context ability

● Paraphraser must be different from the watermarked model

● Utilizes translations of paragraphs in non-English novels and English novels

and treats them as paraphrases

● At the paragraph level, so has ability to have external context and structural

reordering

Building Paraphraser Attacker

● Step 1: Align
Sentences

● Step 2: Choose
sentence subset

● Step 3: Re-order

● Step 4: Map

Building Paraphraser Attacker

● Three evaluation metrics are of paramount importance
● Detection accuracy

○ True-positive rate
○ False-positive rate (fixed to 1%)

● Semantic similarity
○ Importance because if paraphrasing is effective, it will have the same meaning
○ Semantic similarity evaluated using P-SP from Wieting et al.

■ Robust against topically similar non-paraphrases
■ Using random paragraphs from same book, score is 0.09
■ Average human paraphrasing score is 0.76 (semantics preserved if it beats this)

Experiments Attacking with DIPPER

● Base LMs
○ GPT2-XL (1.5B), OPT-13B, and text-davinci-003 from GPT-3.5 (175B)

○ 300 tokens long before passing to dipper

● Two types of generations tasks
○ Open-ended generation (LM generates continuation of two-sentence prompt)

○ Long-form question answering (LM answers question with 300-word answer)

○ Human-written text kept in testing set

Models and Datasets

● Detection algorithms
○ Watermarking
○ DetectGPT
○ GPTZero
○ OpenAI’s text classifier
○ RankGenXL-all

● Paraphrasing AI-generated text
○ Pass prompts and responses for each task through DIPPER
○ Inputs are lexical and order controls
○ Truncate so all have same number of words (human, ai-generated, and paraphrased)
○ To preserve semantics, paraphrase three sentences at a time and only pass through once (to demonstrate

effectiveness)

Detection Algorithms and Process

Experiments Attacking with DIPPER (Open)

● Paraphrasing preserves

semantic accuracy while

significantly lowering

detection rate

● Non-watermarking detectors

generally ineffective

● ROC plots confirm trends at

1% false-positive rates

Results (Long-Form)

ROC Curves

● Different detectors

in varying colors

● Before paraphrasing

solid

● After paraphrasing

dashed

● Results displayed were after one paraphrasing iteration, to improve

effectiveness can do so multiple times

● Use alternative paraphrasers to DIPPER which may prove more effective

● Use LLM’s to paraphrase certain areas
○ While this may be effective, it could also be prone to watermarking detection

Alternative Paraphrasing Attacks

● As previously discussed, LLM API’s store generated text and prompts in a

database

● Users can enter AI text as a query, then the interface searches to see if a

sequence is semantically similar to the input

● Utilizes a semantic similarity scorer (e.g. P-SP or BM25)

Retrieval Defense Overview

Retrieval Defense Overview

● Building the database
○ x1,...,xN are set of prompts fed into

API
○ yi = fLM(xi) as LLM output
○ Y = [y1,...,yN] is the constructed

database through encoding all API
outputs retrieval encoder yi =
fret(yi)

○ Database is dynamically updated
and inaccessible except through
the API

Formulating Retrieval Defense

● Retrieving the database
○ y’ is candidate text
○ y’ = fret(y’) is encoded vector
○ For a the interface client to know if y’ was

generated by the API fLM, find the
maximum similarity score:

○ Non-paraphrased text will result in 1.0
○ Increasing T increases detection of

paraphrased content, but also increases
false-positive rate

Retrieval versus Other Detectors

● Retrieval is effective with 15M generation corpus size (left)
● Performs best with minimum 50 token query (right)

Retrieval versus Large Retrieval Corpus

● Store space requirements
○ Major LLMs have complex storage infrastructure
○ Only 5TB (compared to Google Search Index, 100,000TB)

● Computational requirements
○ 14-Core GPU, took 1s per retrieval (15M)
○ Extrapolating to 2B would take 130 s/retrieval
○ Fully parallelizable and likely would use a better GPU than a Macbook’s

● Large database accuracy
○ Expensive to create from scratch, thus must use publicly available databases
○ Using 1B would be more effective, but hard to access (could use an LLM’s private database)

Retrieval: Scalability

● API-Specific
○ Must know the applicable API (if DeepSeek used instead of OpenAI, OpenAI’s API will

proclaim its not paraphrased)

● Closed-Source LLMs
○ Open-source LLMs do not store generated outputs in a database like closed-source LLMs do
○ Watermarking also has a similar limitation

● Retrieval infrastructure
○ With an estimate of 2B entries per database every year, optimization must be applied

● Privacy Concerns
○ Potential risk of all user data being leaked

Retrieval: Limitations

● Data Memorization
○ Can result in false-positives, originally written by humans but then classified as AI-generated

○ Suggestion: API providers retrieve over the model’s training set

● Large Databases
○ Causes a decrease in accuracy, but overall is rather minor (1% when scaling PG19 1 to 15M)

● Iterative Attacks (Access to Detectors)

● Lack of threshold, T, guarantee

● Short outputs

Retrieval: Limitations

Paper 3: OUTFOX

Paper Overview

● Malicious users might attempt to deliberately evade the detectors based on

detection results.

● Previous studies did not operate based on the assumption above.

● OUTFOX improves the robustness of LLM-generated-text detectors by

allowing both the detector and the attacker to consider each other’s output.

Motivation

● Growing concerns about the potential misuse of LLMs, like in plagiarizing AI

Generated text (AIGT).

● Existing AIGT detectors perform poorly against simple attacks like

paraphrasing.

● This raises the risk that malicious users might exploit LLMs to create texts

specifically designed to evade detection.

Methodology

● OUTFOX Framework Overview:
○ Collaboration between a detector (identifying AI-generated essays) and an attacker (creating

adversarial examples to bypass detection).

○ In-context learning to improve detection capabilities.

● Key innovation: The adversarial generation process makes the detector

more robust and adaptable.

 The authors propose OUTFOX, a novel framework designed to enhance the robustness and
applicability of LLM-generated text detectors.

Constructing a Dataset to Detect LLM-Generated
Essays

● Base Dataset: Argumentative essays from Maggie et al. (2022), written by 6th–12th grade

U.S. students.

● Dataset Creation Process:

○ Generated pseudo-problem-statements using ChatGPT.

○ Instruction-tuned LLMs crafted essays based on these statements.

● Dataset Composition:

○ 15,400 triplets of essay problem statements, student-written essays, and

LLM-generated essays.

○ Split: 14,400 (training), 500 (validation), 500 (test).

● Includes 500 adversarially attacked essays for evaluation.

OUTFOX detector: The detector utilizes the adversarially generated essays as examples for
in-context learning to learn to detect essays from our OUTFOX attacker.

OUTFOX attacker: The attacker considers our OUTFOX detectors prediction labels as examples for in-context learning and
adversarially generates essays that are harder to detect.

“Although the framework theoretically allows the detector and attacker to iteratively strengthen each other many times, we focus on
only once.”

Comparison of the detection performances of our OUTFOX detector on attacked essays, with and
without considering attacks.

Comparison of the detection performances of the OUTFOX detector on non-attacked essays, with and
without considering the attacks.

Comparison of the detection performance of the detectors on ChatGPT-generated essays, before and after
being attacked by DIPPER and OUTFOX.

Comparison of the detection performances of the OUTFOX detector and prior approaches on
non-attacked essays.

Cosine similarity distributions of non-attacked essays and the OUTFOX attacker-generated essays with
human-written essays, respectively.

● OUTFOX Framework: Improves detector robustness against attacks through in-context learning.

● Key Findings:

○ Detector effectively learns to identify adversarial essays.

○ Minimal negative impact on detecting non-attacked texts.

○ Adversarial examples outperform previous methods in evading detection.

● Insights: Attacker-generated essays are semantically closer to human-written essays, enhancing

attack success.

● Future Directions: Expand the framework to domains like fake news detection and academic paper

analysis.

Conclusion

References

https://proceedings.neurips.cc/paper_files/paper/2023/file/575c450013d0e99e
4b0ecf82bd1afaa4-Paper-Conference.pdf

https://arxiv.org/abs/2406.01179

OUTFOX: LLM-Generated Essay Detection Through In-Context Learning with
Adversarially Generated Examples | Proceedings of the AAAI Conference on
Artificial Intelligence

https://proceedings.neurips.cc/paper_files/paper/2023/file/575c450013d0e99e4b0ecf82bd1afaa4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/575c450013d0e99e4b0ecf82bd1afaa4-Paper-Conference.pdf
https://arxiv.org/abs/2406.01179
https://ojs.aaai.org/index.php/AAAI/article/view/30120
https://ojs.aaai.org/index.php/AAAI/article/view/30120
https://ojs.aaai.org/index.php/AAAI/article/view/30120

